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Learning Objectives:

From this module students may get to know about the following:

1.
2.

Hamiltonian formalisms for fields and the canonical stress tensor.

The covariant generalization of the Poynting theorem, the law of
conservation of energy.

Problems with the canonical stress tensor and their alleviation by
symmetric stress tensor.

The covariant form for the angular momentum of the field.



Hamiltonian and the Stress Tensors

20.1 Introduction

In this module we give a Hamiltonian description of field theory, in particular the electromagnetic
field. As we know very well, in particle mechanics, the transition from the Lagrangian to the
Hamiltonian formulation is made by first defining the canonical momentum variables by

_ 0L(g;,Gi. 1) i=12..n
oq: ’ Y

P (1)

L is the Lagrangian which is to be regarded as a function of the generalized coordinates ¢, and

generalized velocities ¢; (which may be the ordinary coordinates and velocities) and perhaps an
explicit function of time t. The Hamiltonian is then defined through

H(qi’ pi1t)zzpiqi _L(qi:qwt) 2

Note that the Hamiltonian is to be regarded as a function of (q;, p;,t). It then follows from

Hamilton’s equation of motion that if the Lagrangian is not an explicit function of time, i.e., if
oL/ot =0, then dH /dt = 0, which means that the Hamiltonian is a constant of motion. This is
an expression of the conservation of energy.

The Lagrangian approach to field theory was introduced in the last module. As we explained
there, the approach to continuous fields closely parallels the techniques used for discrete point

particles in mechanics. The finite number of generalized coordinates g;(t) and generalized
velocities ¢;(t),i=1, 2, ..., n, are replaced by an infinite number of degrees of freedom. Each

point in space-time X“ corresponds to a finite number of values of the discrete index i. The value
of the field at each point in space-time is a coordinate. Thus the generalized coordinate q; is

replaced by a continuous field ¢, (x) with discrete index k (= 1, 2,, n) and a continuous index,

X“. The generalized velocity ¢, is replaced by a four-vector gradient, 6”¢, (x) . The Euler-
Lagrange equations follow from the stationary property of the action integral with respect to
variations 6@ and &(0”¢,) around the physical values. We thus have the following
correspondences:

i— x%k
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The Euler-Lagrange equations take the form
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20.2 The canonical Stress Tensor

Similarly, we need to construct a Hamiltonian density H whose volume integral over three-

dimensional space, H, can be interpreted as energy. The Lorentz transformation property of H
can be guessed as follows. Since the energy of a particle is the time component of a four-vector
(the energy-momentum four-vector), the Hamiltonian should transform in the same way. Since

H= .f Hd>3x , and the invariant four-volume element is d*x = d*xdx, = cd®xdt , it is necessary
that the Hamiltonian density transform as the time-time component of a second rank four-tensor.
From the Lagrangian density I:(¢ﬁK (x),0”¢. (X)), we construct the Hamiltonian density in
analogy with equation (2) as
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The first factor in the sum, a—¢ is the field momentum canonically conjugate to ¢, (x) and
6(8—;)

is equivalent to the velocity ¢;. The inferred Lorentz transformation property of H
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ot
suggest that the covariant generalization of the Hamiltonian density is the canonical stress

tensor:
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For the electromagnetic field, the field variables are A“ and 0’ A%, so we make the
replacements

é — A“,8ﬂ¢k — 0P A”
so that
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For the free electromagnetic field the Lagrangian is
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so that
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Let us look at the first term. Using the relation between the field and the potentials
F“ =0"A" — 0" A"
we write

oF ¥ o(0" A" —0"A*) 0(g“°0_A"—g"”0_A")
7 Fyv = 7 Fuv = 2 F/w
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Proceeding in the same fashion the second term also produces the same result, so that
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To elucidate the meaning of this tensor, let us look at its specific components. From the explicit
forms of F* and F,,:
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From equation (10)
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Now from the definition of the electric field in terms of the potentials
oA OA

E=-VbO-—>-"=E+VD (14)
at at

On using this relation and the fact that for free electromagnetic field, V.E =0, we have

- EE+V0)- (B¢ B~ (eE B ) +5V.(0E) (19
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Since T% was postulated as the covariant generalization of the Hamiltonian, we expect T® to
represent energy density. The above expression does contain the desired term

%(goE2 + B?/ u,) which is the field energy density. But an additional term is also present, viz.,

@.(CDE) . If we suppose that the fields are localized in some finite region of space (and because

of the finite velocity of propagation, they always are), then on integration over all space the
volume integral of this last term is converted into a surface integral which vanishes:

— — 3, =\ A —
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This, of course, is the usual expression for the energy of the electromagnetic field.

Now let us look at the T® component of the canonical stress tensor:
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On substituting this into the expression for T% , we have

HoC HoC
One would have expected T% to represent something like momentum density which it does,

"™ 1l - = . . . .

except for the additional term ——V.(EA). Once again the additional term is a divergence and
HoC

on integration over all space changes into a surface integral via Gauss theorem and vanishes so

that

J-TOid‘Q'X:iJ.(Ex B)d®x = CP' fiig (18)
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This is the usual expression for the electromagnetic field momentum.

In a similar calculation we also obtain

Tio:i(gxg)iJric[(%xq)é)i—axi(opEi)] (19)
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> Evidently the canonical stress tensor T% is not symmetric. This is clear from the
definition [equation (10)] itself, since it contains the term 67 A* but not its counterpart
oA

20.2.1 Poynting Theorem



The connection of the time-time and time-space components of T* with the energy and
momentum density of the field suggests that there is a covariant generalization of the Poynting
theorem or the differential conservation law of energy, viz.,

0,T% =0 (20)

We prove this relation for the general case described by the tensor (7) and Euler-Lagrange
equations (5). Consider
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By means of the Euler-Lagrange equation (5)

, oL oL oL oL
0 = -0, =
0r"d) o4, 0C0,4) 04,

the first term above can be transformed and we obtain
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The Lagrangian density is a function of ¢, and 0“@, which are themselves functions of four-
vector x, so by the chain rule of partial differentiation

000 =T L org s o4
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Hence
0,T% =a’L—o’L =0

The conservation law or continuity equation (18) yields the laws of conservation of energy and
momentum. On integrating the equation over all space we obtain

0=[0,T”d* =0, [T”d*+[4T"d

The second integral, being a divergence, can be converted into a surface integral by use of Gauss
theorem



L o.T¥d % = fsT‘ﬂnida

If the fields are localized, which they are, as we have seen, the contribution of this integral
vanishes and we have

0, [Td* =0

Since T® isthe energyand T® the momentum of the field, we have

d d =
awﬁeld =0; apﬁeld =0 (21)

20.3 The Symmetric Stress Tensor
The canonical stress tensor, T# , while adequate so far, has a certain number of deficiencies.

> Evidently the canonical stress tensor T is not symmetric. This is clear from the
definition [equation (8)] itself, since it contains the term O0”A* but not its
counterpart 0" A” .

> Though the integrals of T® and T” represent the energy and (c times) momentum

respectively, T® and T differ from the expressions for the energy and momentum
densities.

> Further, the canonical stress tensor involves the potentials and the expression therefore is
not gauge invariant.

> Finally we add that the trace of T is not zero, a requirement that comes from the zero
mass of the photons.

To obtain a symmetric, traceless, gauge-invariant stress tensor ®“ from the canonical stress
tensor, T, we proceed as follows. From the definition of the field tensor, we have

FA=0/N -0'N ="' =0"N —-F™.

Substitute this into expression for T% |, equation (8), so that

Taﬂ = ﬂi[gay F/MF/w +%gaﬁ F,quﬂv] _/Ji gaﬂ F,ulalAﬂ (22)
0 0

The first two terms in equation (22) are gauge invariant (as they do not involve the potentials
directly) and symmetric in o and £ . With the help of the Maxwell equations for the source-free

case
10E

VE=0VxB-="==0
c ot



or
0 ﬂF“" =0
the last term can be recast as
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0,T," =—=0,0,[F“A1=0 (24)
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since 0,0, is symmetric while F** is antisymmetric. Further

T, :iai[F“Aﬂ]: 1 [F'OAﬂ] V(AﬂE)
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Hence
jTOﬁd X = j V(AﬂE)d X = § n(AﬁE)da 0 (25)

for localized fields.

Since T% and TD“ﬁ both satisfy differential conservation laws [equations (20) and (24)
respectively], so does their difference T —TD“'g . Similarly the integral relations (16) and (18)
are also valid for the difference. We are therefore free to define the symmetric stress tensor @%

7 o7 (27 1 o7 1 [o7 v
O =T —T," ==[g"F,F* +2g”F, F"] (26)
Hy
with the property
0,07 =0, (27)

Using the explicit expressions for F* and F,5, equations (11) and (12) respectively, we obtain
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Here the Latin indices i and j, as throughout, refer to Cartesian components in 3-space. Recall
that @® is the energy density of the electromagnetic field, u; @ is ¢ times the momentum
density of the electromagnetic field, g and @' is the negative of the Maxwell stress tensor

Mij"v'), which is related to the flow of momentum across a surface. The tensor ®* can be
written in a schematic block matrix form as

u cd
®aﬂ :( g (M)j
cg —T

Here u is a single entry, cg is a row vector, c§' is the transposed column vector and Tij(M) isa
3x 3 matrix. The various other, covariant and mixed, forms of the stress tensor are

u —cg

cg ij
" " u —Cg
%% =9“ 7ﬁ_[cg .I_“(M)]
u cg
B B _
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The differential conservation law [equation (27)]:



0,07 =0

embodies Poynting’s theorem and conservation of momentum for free fields. For example, for
L =0 we have

0=0,0° =2, ¥5),
c ot

where S = c?§ is the Pointing vector. This is the differential form of the law of conservation of

energy in the absence of sources: the rate at which the energy in a volume increases is the
negative of the rate at which it flows out of the volume. Similarly for g =i,

. ) 3
0=0,0" = 99 _ ziTﬁ(M)
ot 1 0X;

which is the differential form of the law of conservation of momentum for the field in the absence
of the sources.

20.4 The Angular Momentum

In particle mechanics the angular momentum of a system of particles can be defined through the
antisymmetric tensor

M; = Z[Xipj =X p]

all particles

This tensor has three independent components which together form the angular momentum

L=rxp. Extending this idea to four dimensional space, we define an antisymmetric tensor
M by

M7= > [x“p’-x"p’]

all particles

This has six independent components of which the three components corresponding to the space
part M; represent the angular momentum of the system, as before. Conservation of angular

momentum is expressed by the statement M; = constant. Thus we conjecture that the full

conservation law is M% = constant. Then the constancy of the three space-time components of
M% is expressed as

M =const = Y[ w_ ctp'] = const
c

If we divide by the total energy, ZW , we get
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The sum on the left hand side is the position of the centre of mass of the system

p o 2™

cm Z}/rn

while that on the right is t times the centre of mass velocity. Thus we obtain

T

cm Z]/rn

a very reasonable result.

+ const

To get the equivalent result for the electromagnetic field, we define the field angular momentum
density by

M% = @PBx’ —E x’
which is the covariant generalization of the angular momentum density in three-space. Then
O,M¥" =9, (07X —O@“x")

=0,[07 X +[0%18,x" —0,[07]x" —[0710 X"
=[0%]0,x" -[0710,x" =07 -0 =0

This is the differential form of the law of conservation of angular momentum for the field in the
absence of sources.

> The symmetry of ®% is quite crucial to this proof of conservation of angular

momentum. Had we used the canonical stress tensor T% instead, conservation of
angular momentum would not have been possible.



Summary

1.

Hamiltonian formalism for fields is described. Canonical stress
tensor is introduced. The Hamiltonian density is a component of a
second order tensor represented by the canonical stress tensor.

The formalism is then developed for the electromagnetic field in
particular.

The covariant generalization of the Poynting theorem, the law of
conservation of energy, is given. The covariant generalization
includes the law of conservation of energy and of momentum.
Problems with the canonical stress tensor are discussed and the
symmetric stress tensor introduced which eliminates these problems.
The covariant form for the angular momentum of the field is given
that needs the introduction of a third rank tensor. The law of
conservation of angular momentum is obtained in terms of this third
rank tensor.



