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Learning Objectives: 

 

From this module students may get to know about the following: 

1. Hamiltonian formalisms for fields and the canonical stress tensor. 

2. The covariant generalization of the Poynting theorem, the law of 

conservation of energy. 

3. Problems with the canonical stress tensor and their alleviation by 

symmetric stress tensor. 

4. The covariant form for the angular momentum of the field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Hamiltonian and the Stress Tensors 
 
20.1 Introduction 
 

In this module we give a Hamiltonian description of field theory, in particular the electromagnetic 

field. As we know very well, in particle mechanics, the transition from the Lagrangian to the 

Hamiltonian formulation is made by first defining the canonical momentum variables by 
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L  is the Lagrangian which is to be regarded as a function of the generalized coordinates iq  and 

generalized velocities iq  (which may be the ordinary coordinates and velocities) and perhaps an 

explicit function of time t.  The Hamiltonian is then defined through 
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Note that the Hamiltonian is to be regarded as a function of ),,( tpq ii .  It then follows from 

Hamilton’s equation of motion that if the Lagrangian is not an explicit function of time, i.e., if 

0/  tL , then 0/ dtdH , which means that the Hamiltonian is a constant of motion.  This is 

an expression of the conservation of energy.  

 

The Lagrangian approach to field theory was introduced in the last module.  As we explained 

there, the approach to continuous fields closely parallels the techniques used for discrete point 

particles in mechanics.  The finite number of generalized coordinates )(tqi  and generalized 

velocities )(tqi
 , i = 1, 2, …, n, are replaced by an infinite number of degrees of freedom.  Each 

point in space-time 
x  corresponds to a finite number of values of the discrete index i.  The value 

of the field at each point in space-time is a coordinate.  Thus the generalized coordinate qi is 

replaced by a continuous field )(xk  with discrete index k (= 1, 2,, n) and a continuous index, 

x .  The generalized velocity iq  is replaced by a four-vector gradient, )(xk
  .  The Euler-

Lagrange equations follow from the stationary property of the action integral with respect to 

variations k  and )( k   around the physical values.  We thus have the following 

correspondences:  
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The Euler-Lagrange equations take the form 
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20.2 The canonical Stress Tensor 
 

Similarly, we need to construct a Hamiltonian density H
~

 whose volume integral over three-

dimensional space, H, can be interpreted as energy.  The Lorentz transformation property of H
~

 

can be guessed as follows.  Since the energy of a particle is the time component of a four-vector 

(the energy-momentum four-vector), the Hamiltonian should transform in the same way.  Since 

 xdHH 3~
, and the invariant four-volume element is xdtcdxdxdxd 3

0

34  , it is necessary 

that the Hamiltonian density transform as the time-time component of a second rank four-tensor.  

From the Lagrangian density ))(),((
~

xxL kk   , we construct the Hamiltonian density in 

analogy with equation (2) as  
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The first factor in the sum, 
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 is equivalent to the velocity iq .  The inferred Lorentz transformation property of H

~
 

suggest that the covariant generalization of the Hamiltonian density is the canonical stress 

tensor: 
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For the electromagnetic field, the field variables are 
A  and 

 A , so we make the 

replacements 
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so that 
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For the free electromagnetic field the Lagrangian is  
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so that 
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Let us look at the first term.  Using the relation between the field and the potentials 
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we write 
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Proceeding in the same fashion the second term also produces the same result, so that 
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and 
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To elucidate the meaning of this tensor, let us look at its specific components.  From the explicit 

forms of 
F  and F : 

 

  































0/

0/

0/

///0

xyz

xzy

yzx

zyx

BBcE

BBcE

BBcE

cEcEcE

F
    (11) 

 

  




























0/

0/

0/

///0

xyz

xzy

yzx

zyx

BBcE

BBcE

BBcE

cEcEcE

F     (12) 



 

 

 

 

  )/(
2

1

4

1~ 222

00

BcEFFL free 





  (13) 

 

From equation (10) 
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Now from the definition of the electric field in terms of the potentials 
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On using this relation and the fact that for free electromagnetic field, 0.  E


, we have 
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Since 
T  was postulated as the covariant generalization of the Hamiltonian, we expect 

00T  to 

represent energy density.  The above expression does contain the desired term 

)/(
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0  BE   which is the field energy density.  But an additional term is also present, viz., 

).( E


 .  If we suppose that the fields are localized in some finite region of space (and because 

of the finite velocity of propagation, they always are), then on integration over all space the 

volume integral of this last term is converted into a surface integral which vanishes: 
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This, of course, is the usual expression for the energy of the electromagnetic field. 

 

Now let us look at the 
iT 0
 component of the canonical stress tensor: 
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Further 
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Hence 
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On substituting this into the expression for 
iT 0
, we have 
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One would have expected 
iT 0
 to represent something like momentum density which it does, 

except for the additional term ).(
1

0

iAE
c


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
.  Once again the additional term is a divergence and 

on integration over all space changes into a surface integral via Gauss theorem and vanishes so 

that 
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This is the usual expression for the electromagnetic field momentum. 

 

In a similar calculation we also obtain 
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 Evidently the canonical stress tensor 
T  is not symmetric.  This is clear from the 

definition [equation (10)] itself, since it contains the term 
 A  but not its counterpart 

 A . 

 

20.2.1 Poynting Theorem 



 

 

 

The connection of the time-time and time-space components of 
T  with the energy and 

momentum density of the field suggests that there is a covariant generalization of the Poynting 

theorem or the differential conservation law of energy, viz.,  
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We prove this relation for the general case described by the tensor (7) and Euler-Lagrange 

equations (5).  Consider 
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By means of the Euler-Lagrange equation (5) 
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the first term above can be transformed and we obtain 
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The Lagrangian density is a function of k   and k
  which are themselves functions of four-

vector x, so by the chain rule of partial differentiation 
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Hence 
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The conservation law or continuity equation (18) yields the laws of conservation of energy and 

momentum.  On integrating the equation over all space we obtain 
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The second integral, being a divergence, can be converted into a surface integral by use of Gauss 

theorem 
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If the fields are localized, which they are, as we have seen, the contribution of this integral 

vanishes and we have 
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Since 
00T  is the energy and  

iT 0
 the momentum of the field, we have 
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20.3 The Symmetric Stress Tensor 
 

The canonical stress tensor, 
T , while adequate so far, has a certain number of deficiencies.   

 

 Evidently the canonical stress tensor 
T  is not symmetric.  This is clear from the 

definition [equation (8)] itself, since it contains the term 
 A  but not its 

counterpart
 A .   

 Though the integrals of 
00T  and 

iT 0
 represent the energy and (c times) momentum 

respectively, 
00T  and 

iT 0
 differ from the expressions for the energy and momentum 

densities.   

 Further, the canonical stress tensor involves the potentials and the expression therefore is 

not gauge invariant.   

 Finally we add that the trace of 
T  is not zero, a requirement that comes from the zero 

mass of the photons. 

 

To obtain a symmetric, traceless, gauge-invariant stress tensor 
  from the canonical stress 

tensor, 
T , we proceed as follows.  From the definition of the field tensor, we have 
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Substitute this into expression for 
T , equation (8), so that 
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The first two terms in equation (22) are gauge invariant (as they do not involve the potentials 

directly) and symmetric in   and  .  With the help of the Maxwell equations for the source-free 

case 
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 the last term can be recast as 
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Now 
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since   is symmetric while 
F  is antisymmetric.  Further 
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for localized fields. 

 

Since 
T  and 
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DT  both satisfy differential conservation laws [equations (20) and (24) 

respectively], so does their difference 


DTT  .  Similarly the integral relations (16) and (18) 

are also valid for the difference.  We are therefore free to define the symmetric stress tensor 
  
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with the property 
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Using the explicit expressions for
F  and F , equations (11) and (12) respectively, we obtain 
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or 
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Here the Latin indices i and j, as throughout, refer to Cartesian components in 3-space.  Recall 

that 
00  is the energy density of the electromagnetic field, u; 

i0 is c times the momentum 

density of the electromagnetic field, g


 and 
ij is the negative of the Maxwell stress tensor 

)(M

ijM , which is related to the flow of momentum across a surface.  The tensor 
  can be 

written in a schematic block matrix form as  
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Here u is a single entry, gc


 is a row vector, 
Tgc


 is the transposed column vector and 

)(M

ijT  is a 

33  matrix.  The various other, covariant and mixed, forms of the stress tensor are 
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The differential conservation law [equation (27)]: 
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embodies Poynting’s theorem and conservation of momentum for free fields.  For example, for 

0  we have 
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where gcS


2  is the Pointing vector.  This is the differential form of the law of conservation of 

energy in the absence of sources: the rate at which the energy in a volume increases is the 

negative of the rate at which it flows out of the volume.  Similarly for i , 
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which is the differential form of the law of conservation of momentum for the field in the absence 

of the sources. 

 

20.4 The Angular Momentum 
 

In particle mechanics the angular momentum of a system of particles can be defined through the 

antisymmetric tensor 
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This tensor has three independent components which together form the angular momentum 

prL


 .  Extending this idea to four dimensional space, we define an antisymmetric tensor 

M  by 
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This has six independent components of which the three components corresponding to the space 

part ijM  represent the angular momentum of the system, as before.  Conservation of angular 

momentum is expressed by the statement ijM  = constant.  Thus we conjecture that the full 

conservation law is 
M  = constant.  Then the constancy of the three space-time components of 

M  is expressed as 
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If we divide by the total energy, W , we get 
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The sum on the left hand side is the position of the centre of mass of the system 
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while that on the right is t times the centre of mass velocity.  Thus we obtain 
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a very reasonable result.  

 

To get the equivalent result for the electromagnetic field, we define the field angular momentum 

density by 
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which is the covariant generalization of the angular momentum density in three-space.  Then 
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This is the differential form of the law of conservation of angular momentum for the field in the 

absence of sources.   

 

 The symmetry of   is quite crucial to this proof of conservation of angular 

momentum.  Had we used the canonical stress tensor T  instead, conservation of 

angular momentum would not have been possible. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Summary 
 

1. Hamiltonian formalism for fields is described.  Canonical stress 

tensor is introduced.  The Hamiltonian density is a component of a 

second order tensor represented by the canonical stress tensor. 

2. The formalism is then developed for the electromagnetic field in 

particular. 

3.  The covariant generalization of the Poynting theorem, the law of 

conservation of energy, is given.  The covariant generalization 

includes the law of conservation of energy and of momentum. 

4. Problems with the canonical stress tensor are discussed and the 

symmetric stress tensor introduced which eliminates these problems. 

5. The covariant form for the angular momentum of the field is given 

that needs the introduction of a third rank tensor.  The law of 

conservation of angular momentum is obtained in terms of this third 

rank tensor. 

 


